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ABSTRACT

Considerable attention has been paid over the years to the problem of growing high purity KDP and KD*P to meet
damage threshold requirements of ICF lasers at LLNL. The maximum fluence requirement for KD*P triplers on the
National Ignition Facility (NIF) is 14.3 J/cm® at 351 nm in a 3 ns pulse. Currently KD*P (conventional or rapid
grown) cannot meet this requirement without laser (pre)conditioning. In this overview, recent experiments to
understand laser conditioning and damage phenomena in KDP and KD*P will be discussed. These experiments have
lead to a fundamental revision of damage test methods and test result interpretation. In particular, the concept of a
damage threshold has given way to measuring performance by damage distributions using millimeter sized beams.
Automated R/1 (conditioned) damage tests have shown that the best rapidly grown KDP crystals exhibit the same
damage distributions at the best conventionally grown KD*P. Continuous filtration of the growth solution and post
growth thermal annealing are shown to increase the damage performance as well.

In addition, centimeter size beams from multijoule lasers have been used to study stepwise laser conditioning in
KDP. These tests have shown that an increase in the damage threshold of ~1.5X is attainable with 8-12 shots of
increasing fluence. The experiments show that the damage density (pinpoints/mm®) evolves exponentially and once
formed, the micron sized bulk pinpoints remain stable against increases in local fluence.

The information obtained from damage distributions and conditioning studies has been used with model NIF spatial
profiles to determine the probability of damage and the local pinpoint density generated in a tripler. Calculations
based on test data have shown that for well conditioned, high quality rapid growth KDP or conventional growth
KD*P the damage probability is less than 3%. Furthermore, the fluence profiles expected on NIF lead to only
small numbers of generated pinpoints which are not expected to adversely affect NIF operations.

To check the validity of the results, the 37 cm KD*P tripler from the Beamlet laser was mapped'for damage. The
inspection revealed pinpoint densities of the order of predicted by the damage evolution calculations.
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1. INTRODUCTION

The evolution of increasingly powerful inertial confinement fusion (ICF) laser systems places severe demands on the
damage performance of optical system components. In particular, the current maximum 351 nm (3®) fluence
requirement of 14.3 J/cm® placed on KD*P triple harmonic generation crystals of the National Ignition Facility
(NIF) exceeds the unconditioned damage threshold of even the best material available. Thus KD*P triplers are
considered to be the NIF system fuse. The micron sized voids generated within the bulk material act as scatterers and
in high enough density are expected to affect frequency conversion efficiency and wavefront distortion. At a

minimum, this will result in energy loss and possibly give rise to a number of adverse effects including damaging
“hot” spots in the downstream optical components.

In order for NIF to reach its planned energy output, it was mandated from the outset that the damage performance the
triplers would improve to the level that the NIF 3@ THG redline fluence would be met. In the past, the path to
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conditioning °. With the shift in crystal growth methods from conventional (slow) growth to rapid growth for
production of approximately 600, 50 cm class NIF Pockel’s cell and harmonic generation crystals, it was not clear
what the effects of these technologies on crystal damage performance would be. To accommodate the extensive
damage test requirements resulting from the rapid growth crystal development and subsequent quality assurance
testing during NIF crystal production, a dedicated KDP damage test facility was required. The ZEUS damage test
facility’ consists of a commercially available 10 Hz, Q-switched Nd:YAG laser capable of delivering ramped
fluences up to 100 J/cm? in millimeter sized beams at both 1064 nm (1) and 355 nm (3®). The system has
automated site selection and irradiation capabilities and uses a HeNe scatter detection diagnostic to measure the onset
of bulk damage at each test site. The system can test hundreds of sites per sample. This makes it possible to
determine the characteristic damage distribution of the sample and forces the results to be interpreted in a
probabilistic manner, as opposed to the strict damage threshold of the past. Because of the statistical nature of .
damage in KDP, hundred site tests give a more intrinsically accurate (from a sampling standpoint) means of
determining whether growth and post growth process changes have a real effect on the damage distributions. Also,
the tests reveal the low fluence nature of the damage distribution, and make it possible to determine the probable
damage performance in a NIF-like beam, despite the fact that the material may not have zero failure probability at the
NIF 3w redline fluence. This will be discussed in Section 2.

In addition to the extensive research effort undertaken to grow crystals with high initial damage performance,
numerous experimental campaigns have been performed to determine the effect of post growth treatment on KDP
damage performance. Such methods are required because it is desirable to reduce the NIF redline failure probability to
the lowest value possible. Post growth processing is expected to reduce fluctuations in the damage performance
within a single crystal as well as for the ensemble of NIF triplers. These include the effect of thermal annealing and
laser conditioning., Literature cited above has shown that thermal conditioning is effective in raising the damage
threshold at 1® but not at 3. Laser conditioning experiments have shown that a ~1.5X increase in damage
threshold is possible for KDP and KD*P at 3®. Laser raster conditioning studies® however were not conclusive in
the utility of that technique in raising the damage performance at 3®. On the other hand, it has long been known
- that KDP and KD*P can be laser conditioned by ramped fluence sequences, leading to the possibility that the
crystals could be conditioned on-line. For this method to be a viable on NIF a shot sequence delivering a
maximum level of conditioning for a minimum number of shots was needed. To determine the feasibility and
prescription for optimal on-line conditioning a test campaign on the Optical Sciences Laser was undertaken'. This
laser is a multijoule Nd:Glass facility capable of delivering a centimeter sized 3® “top hat” beam to the samples at a

rate of 10 shots/day thus mimicking exposure in a NIF-like beam environment. The results of this testing will be
discussed in Section 3.

With the extensive amount of experimental data accumulated on ZEUS and OSL and a model of the NIF beam at the
triplers, it was possible develop two methods for predicting the probability of failure and amount of damage
generated for typical KD*P in a NIF beam. The results of the calculations will be discussed in Section 4 as well as
“confirmation” of the predictions based on scatter mapping of a 37 cm tripler from the Beamlet laser.

2. ZEUS TEST RESULTS

2.1 General features of cumulative failure distributions

As stated above, the ZEUS damage test results are characteristic of each sample. Information about the distributions
can be obtained in two ways. As shown in Figure 1 the test data can be displayed as a cumulative failure
distribution (CFD) denoted by the “S” curve. This results from determining the ~100 individual damage onset
fluences for each sample tested and sorting them in ascending order. If the derivative of the CFD is taken (i.e. the
distribution is binned), the result is the damage probability distribution. The data shown is for conventionally
grown KDP311 which represents the highest damage performance ever measured for KDP or KD*P at LLNL. The
CFD curve shows numerous features common to all KDP damage. Specifically, damage tends to be slight at lower
fluences and increases in density as fluence goes up. This is indicated by the two photographs accompanying the
CFD plot which show scattered HeNe light from damage at low and high fluences. As can be seen in the second
photograph, the damage density increases dramatically at high fluences. The second plot shows the damage



probability distribution. There are two modes to this distribution which can both be fitted fairly well by gaussians
at the bin resolution shown. The bimodal distribution indicates that there are two classes of damaging defect for this
material with the low fluence mode determining the damage behavior on NIF. Moreover, it is important to note that
the low fluence class of defects has not been entirely removed, even for this extraordinary specimen. To date all of

the high damage performance crystals whether conventionally or rapidly grown exhibit a similar bimodal
. distribution. '
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Figure 1. Cumulative failure distribution and associated damage probability for conventionally grown KDP311.
This sample represents the best KDP produced for ICF laser applications. The 50% failure fluence is approximately
44 J/cm? at 3w in a 7.6 ns pulse, however there is a long low fluence tail which determines the damage performance
on NIF. This feature appears as as the low fluence mode in the damage probability plot on the right.

2.2 Effects of continuous filtration

The first implementation of a continuous filtration system for KDP growth was done at LLNL in 1990%. The study
suggested that it was possible to dramatically increase the damage thresholds of crystals grown using this technique.
Therefore a continuous filtration system was developed for rapid growth crystals. The system removes growth
solution from the tanks, heats it to prevent spontaneous nucleation, filters the solution through 0.02 micron pore
filters. The solution is then cooled prior to injection back into the growth tank®. To test the effect of this
technology on rapid growth crystals, two samples were grown from ultra high purity starting salts. These salts were
obtained by reclaiming the pyramid tops from previously grown KDP boules. It is known that the incorporation of
cationic defects is minimized in the pyramidal sector due to the low segregation coefficients which generally results
in very high purity material'®, This material was used to grow crystals under nominally identical growth conditions
with and without continuous filtration. Sample KDP210 was grown with prefiltration of the solution by 0.02
micron filters only, while KDP 214 was grown with pre-and continuous filtration of the solution. Figure 2 shows
the effect on damage performance. Sample 210 showed a high number of visible bulk scatter sites or inclusions after
growth, which were not present in sample 214. For these samples continuous filtration has resulted in an increase
in damage performance of approximately 2X over the entire CFD range. Note also that no portion of the CFD for
KDP 210 approaches the NIF redline fluence while the CFD for KDP214 indicates that approximately 50% of the
sites would survive NIF redline fluences. As will be seen in the following sections this crystal responded well to
thermal annealing and exhibited the best performance of any rapid growth crystal to date.
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Figure 2. The effect of continuous filtration of the 3o damage performance of rapidly grown KDP. The samples
were grown under nominally identical conditions with ultra high purity salts. Sample 210 was prefiltered only
which resulted in high numbers of inclusions in the crystal while sample 214 was continuously ﬁltered during
growth. Sample 214 represents the highest damage performance of a rapid growth crystal to date.

23 Effects of thermal annealing on damage

Previous investigations of the effects of thermal annealing on KDP and KD*P damage performance' have indicated
that it is possible to raise the 1® damage threshold to approximately the level the conditioned (R/1) damage
thresholds by thermal annealing. The typical increase in threshold was on the order of 1.5X. The 3w thresholds,
however, were not substantially affected by the annealing process. Once again, the studies were concened mainly
with conventionally grown crystal and the test were done on nonautomated damage facilities with their inherently
larger sampling errors. To address the effects of thermal annealing on rapid growth crystals three sets of KDP
crystals were annealed at 160 C for various lengths of time up to one month, then damaged tested at both 1® and
3. In each case, unannealed sister samples were kept as control samples. The samples chosen included KDP60, a
relatively early rapid growth boule grown without continuous filtration which contained a fairly high density of
visible scatter sites or inclusions.  This sample was annealed for one month. In addition, samples from
continuously filtered KDP boules 214 was annealed for S days. In the case of RG7B the sample was annealed first
for 5 days then tested. Based on test results from KDP60 this sample was annealed for an additional 10 days then
retested. It should also be pointed out that RG7B represents the first 50 cm class KDP rapidly grown boule using
continuous filtration at LLNL. Results of the tests are shown in Figures 3 and 4 for 1o and 3w respectively.
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Figure 3. Results of thermal annealing at 1®. KDP60 showed a 269% increase in average damage performance
while KDP214 and RG7B annealed samples showed respective increases of 18% and 20%. All the samples were
annealed at 160 C. KDP60 was annealed for one month.

“The results show a dramatic increase in the 1 damage performance of KDP60. One month of annealing at 160C
has raised the damage performance approximately 269% to make this crystal one of the best performing rapidly
grown KDP crystals tested at 10. KDP214 and RG7B also show improvement due to the annealing although to a
substantially lesser degree. For these samples the increase in 50% failure probability fluence was 18% and 20%
respectively. All of the annealed crystals exhibited approximately the same CFD curves. These results indicate that
it is possible to achieve damage performance improvement in any rapidly grown KDP crystal at l@. At the l®
SHG NIF redline fluence (32 J/cm? at 10 ns), all of the annealed samples show failure probabilities on the order of 2-
4%. Based on these low failure probabilities it is not expected that that damage will be an issue for Pockel’s cells
and doubler crystals.

For the case of 3w damage changes as a result of annealing are not as straightforward. As shown in Figure 4,
KDP60 did not exhibit the dramatic change seen at 1. In contrast, KDP214 and RG7B show increases in the 50%
failure probability fluence as a result of annealing, however, the increases are on the order of the fluence
measurement precision of ZEUS at 3m (£15%). This increase is approximately the same magnitude as that seen at
1w. The CFD curves for KDP214 and RG7B also indicate that the annealing process surpresses the low fluence
portion of the curve which results in the low fluence tail seen in all high quality crystals, whether rapidly or
conventionally grown. The failure probabilities at the NIF 3w redline fluence for these sample are on the order of 2-
6%. As will be discussed in detail in Section 4 the low failure probabilities will lead only to low levels of benign
pinpoint damage on the NIF. Since thermal annealing clearly raises the R/1 damage performance at 10 and seems to

surpress the low fluence damage probability at 3w it is expected that it will be incorporated as a post growth tool for
NIF production crystals.
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Figure 4. Results of thermal annealing at 3®. The damage performance of KDP60 has not increased to the same
has not responded significantly to the annealing process. In contrast, KDP214 and RG7B show increases in 50%
failure probability on the order of that seen for 1. These samples also show supression of the low fluence portion

of the CFD. The increase in 50% failure fluence for KDP214 and RG7B is approximately the same as the ZEUS
3 fluence measurement precision of +15%.

3. LARGE BEAM ON-LINE CONDITIONING STUDY

With the exception of a few Beamlet era, conventionally grown KDP boules, the “typical” KDP or KD*P crystal
grown today will have significant probability of failure at the 30 NIF redline fluence unless treated after growth in
some way. Thermal annealing has been shown effective at raising the 10 damage threshold thereby allowing
virtually any rapidly grown KDP crystal to operate without problem as a Pockel’s cell or frequency doubler. For 30
damage though, the effects of thermal annealing are less clear cut. It is therefore desirable to pursue other post
growth methods of increasing damage performance. The next logical candidate is laser conditioning. The most
straightforward method of conditioning a NIF class tripler is via laser raster conditioning where the crystal would be
raster scanned at fixed fluence across its clear aperture. A number of full aperture scans at increasing fluences would
be required to achieve maximum conditioning. Unfortunately, unpublished LLNL 3 raster conditioning studies® on
KDP have not conclusively shown that off-line conditioning by this method is feasible for KD*P. Consequently,

investigating the feasibility of on-line conditioning of NIF triplers at 3w has become a high priority for the KDP
damage group at LLNL.

It should be noted that the automated test techniques used on ZEUS are based on stepwise laser conditioning with a
very low fluence ramp (~0.1J/cm2/s) and a high number of shots. These fluence ramps and shot numbers are simply
not feasible for ICF class laser systems due to the high cost per shot. On the other hand, if a high degree of laser
conditioning could be obtained with a low number of shots and larger fluence increments there would be at Ieast one
feasible way of increasing the damage performance of NIF triplers to acceptable levels. A study of on-line
conditioning'' was undertaken on LLNL’s Optical Sciences Laser (OSL) to determine a ramped fluence shot sequence
which would yield adequate laser conditioning for NIF triplers. The results of the study on KDP214 are presented
here. Essentially, the sample was exposed to various ramped fluence shot sequences using a 7mm diameter top hat
beam at 30 with a 3 ns pulse. The shot sequences started at very low fluence and ended at approximately the same
average fluence as shown in Figure 5. The single shot/site average fluence was chosen so that substantial pinpoint



density would be generated. The subsequent shot sequences were chosen to ramp up to this level so that a direct
comparison of damage pinpoint density could be made.
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Figure 5. Ramped shot sequences for sample 214. After finding the-approximate 1/1 damage threshold, 4/1, 8/1 and
12/1 ramps to the same approximate average fluence level were attempted. Due to fluctuations in the shot energy
and the use of fixed attenuators, precise prediction of the average fluence on a given shot was not always possible.

As a result the ramped sequences typically received higher average fluence on the final shot than for single shot
exposures.

After the exposures, the sample was scatter mapped on the ZEUS system with a 300 micron HeNe beam using 50
micron steps. Figure 6 shows the reduction in pinpoint density as a result of the shot sequences.

1 shot/site 7 shots/site

4 shots/ site 12 shots/site

j€=7 mm —p

Figure 6. Scatter maps for sample 214. The 1/1 sites shows more severe damage than the ramped sites despite
being exposed to approximately 20% less average fluence. The reduction in damage severity continues to the 12/1
case. .



The pinpoint density obtained from the scatter images was then compared to the local fluence in the spatial profile.
Because of the modulation on the beam the damage evolution behavior for each shot sequence could be determined.
Figure 7 shows the results of the analysis.
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Figure 7. Damage evolution of sample 214 as a result of laser conditioning shot sequences.

The data show clearly the decrease in pinpoint density as a function of shot number . The damage threshold for
increasing shot numbers appears to increase up to the 8/1 shot sequence where it saturates. In addition, the pinpoint
density follows an exponential evolution where the slope changes between the 4/1 and 8/1 shot sequences.
Extrapolated to the NIF redline fluence it appears that there will be in excess of 10* pinpoints/mm® generated in the
bulk of the sample for the 8/1 and 12/1 sequences. The question of whether this pinpoint density will be
exceedingly high for NIF operation will be addressed in the Section 4.

These results indicate that full aperture on-line conditioning of NIF triplers should be achievable in-approximately 8
shots of increasing fluence in equally spaced intervals. It is safe to conclude that the first KD*P triplers used on the
NIF will be adequately conditioned during initial beamline activation. However, considerations of shot cost and
scheduling make it clear that on-line conditioning of replacement crystals will not be (very) practical. Therefore
there is considerable reason to investigate and develop off-line conditioning technologies such as laser raster
conditioning, which seems feasible based on these results, and broadband UV irradiation.

4. PREDICTING NIF TRIPLER PERFORMANCE

With test data from the ZEUS and OSL lasers it is possible to predict the damage performance of KDP and KD*P in
a NIF-like beam'. Once the details of the NIF beam fluence distribution are known there are two approaches which
may be taken. First the overlap of the beam fluence distribution and the damage probability distribution may be
calculated using tools from reliability analysis'>!4. Secondly, the damage evolution behavior may be mapped onto
the spatial profile to determine the local number of pinpoints generated in the bulk of the material.

Figure 8 shows a PROP92 model spatial profile of the 3 beam at the output of the tripler. Ignoring the low
fluence tail in the distribution allows the peak to be fitted with a gaussian function with an average of 8.5 + 0.81 -
J/em?. 1t should be noted that the data above are for the standard full fluence NIF shot and the 12.9 J/em?® peak
fluence in the beam is 11% lower than the 14.3 J/cm? “redline” fluence for triplers. To examine the damage behavior
of the triplers when exposed to a NIF shot with peak fluence at the redline, 11% was added to each fluence value in
the spatial distribution. This resulted in a distribution of 9.05 +1.47 J/cm? with a maximum fluence of 14.26



. J/lem®. The energy content in the beam then became 11.9 KJ for a 192 beam total of 2.3 MJ. Fitting the peak of

this distribution yielded a mean value (for the fit) of 9.44 J/cm? while the standard deviation remains unchanged at
0.81 J/cm?. ‘
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Figure 8. Spatial profile model of NIF beam at output of the KD*P tripler and the associated fluence distribution
(histogram):. The peak can be fitted very well by a gaussian with average of 8.5 £0.81 J/cm’.

To calculate the overall damage probability for fluence and damage distributions which are gaussian the formula

oo

P(B>D)= —2417 j e Py
.71

O,
can be applied. Here = 13- Ko and 6,2 = 652 + Op” are the respective mean and standard deviation of the beam(B)
and damage (D) distributions. For KDP214 this calculation yields a failure probability of 2.6% while for the best
conventionally grown KDP311 it yields a probability of 0.05%. Because of the large measurement uncertainty in
the ZEUS test results these results are essentially indistinguishable.

Predicting the local level of damage in the tripler can be accomplished by mapping the damage evolution behavior
onto the individual fluence pixels/cells of the model spatial profile. For KDP214 conditioned with an 7/1 ramp as in
the OSL test the best fit damage evolution equation was N(F)=5x10"%xp(2.0*F). As shown in Figure 9 below, this
function leads to low local bulk pinpoint generation. The damage evolution function for unconditioned KDP214
was determined to be N(F)=3x10%xp(1.75*F). A NIF redline shot is predicted to generate a total of 28,000
pinpoints for the unconditioned case but less than 200 for the 7/1 conditioned case.

The reliability analysis calculation indicates that there will be a low overall failure probability for well conditioned

NIF triplers while the damage evolution calculations indicate that there will be low local pinpoint generation as
well.
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Figure 9. Plots representing the number of pinpoints formed in the bulk of KDP 214 or LL6-56 material for the
NIF redline fluence spatial profile. The black areas represent densities which exceed 100 pinpoints in the 0.0095
cm® cell volume. The color scale is the same for both images.

5. SUMMARY

The ZEUS and OSL tests described here have provided definitive information regarding the damage performance of
KDP and KD*P on the NIF. In particular the ZEUS test results show the importance of continuous filtration during
growth in consistently achieving adequate damage performance. Post growth thermal annealing of KDP crystals at
160 C appears to increase the damage performance of rapidly growth samples by up to 2.7X at 1®. The benefits of
thermal annealing at 3w are not as well defined as the dramatic increases seen at 1® were not repeated at 3@. On the
other hand, thermal annealing appeared to surpress the low fluence tail of the CFD at 3w thus leading to less
expected damage on the NIF. Large area beams from OSL were used to study the feasibility of on-line conditioning
for NIF triplers. It was found that substantial conditioning was achievable in 8-12 shots of equal fluence interval.

Analysis of scatter density vs. fluence showed that the number of damage sites evolved exponentially. Further,
damage sites were stable against increases in fluence .

This data was used in conjunction with model NIF spatial profiles to predict the probability and severity of damage
produced by a single shot through well conditioned triplers. It was found that for the best rapidly grown KDP and
conventionally grown, Beamlet-era, KD*P the damage probability for the entire tripler was less than 3%. In
addition, the amount of damage generated in such a tripler was quite low - 165 pinpoints in the entire volume. This
is in direct contrast for approximately 28000 pinpoints generated in an unconditioned tripler of the same material.

The calculations indicated that well conditioned crystals should survive NIF beam environments with minimal,
benign pinpoint damage.

The OSL results indicated the feasibility of on-line conditioning, however, due to cost and time constraints it is
unlikely that replacement triplers would be conditioned this way. Consequently, investigation of off-line
conditioning techniques is of higher priority. In particular, the OSL test results seem to indicate that laser raster

scanning should be effective as a means of conditioning the triplers. Conditioning by broadband pulsed and
continuous UV sources will also be pursued.

The data has also provided baseline information for the development of a functional damage specification for NIF
operations. Defining this specification will entail a modeling effort which incorporates the damage data generated
here. One goal will be to determine the maximum local and cumulative level of damage acceptable for operation of



the NIF triplers. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract No. W-7405-ENG-48.
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